Конечно, говорить "иммунология и космос" не совсем верно. Иммунология вступает в связь не с самим космическим пространством, а с другой научной отраслью. Не будем придираться к словам. Понятно, что речь идет о космической медицине и биологии самых последних лет.
В наиболее краткой и приближенной форме задачи космической медицины: изучить влияние космического полета - невесомости, ускорения, космической радиации на человека; обеспечить нормальную жизнедеятельность организма в герметически замкнутом пространстве корабля, а в будущем и на других планетах и небесных телах.
Возникает масса биологических проблем. А перед иммунологией встает вопрос: как поведет себя в необычных условиях космического полета одна из важнейших систем человеческого организма - иммунологическая система защиты от микробов? Будет ли устойчивость организма к бактериям и вирусам столь же надежна, как в нормальных условиях жизни на Земле?
Вопрос может показаться излишним. Ведь и результаты известных всему миру космических полетов не дают оснований опасаться инфекционных осложнений. Космонавты отлично переносят все условия полета. Правда, продолжительность полетов измерялась пока лишь днями и месяцами.
Но нельзя забывать: мы живем в такое время, когда первый этап завоевания космоса, освоение и исследование околоземного космического пространства завершается. Следующий этап - освоение ближайших небесных тел, в частности, планет солнечной системы. А наименьшее из возможных расстояний от Земли до Марса - 78 миллионов километров.
С медико-биологической точки зрения главная особенность следующего этапа - длительность. Космическая медицина и биология наших дней должны изучить и обеспечить длительные космические полеты, продолжающиеся месяцы и годы. Пока главным образом изучали поведение организма при кратковременных перегрузках и невесомости, функциональные возможности и особенности сердечно-сосудистой, нервной и других систем в этих условиях, вопросы работоспособности, тренировки, психофизиологии. С наступлением эры длительных космических полетов возникают новые ведущие биологические проблемы. В частности, иммунологические: взаимодействие человеческого организма и микробов во внеземных условиях. Это уже целая отрасль науки - космическая иммунология.
По меньшей мере три предпосылки определяют возникновение этой отрасли.
Во-первых, люди путешествуют в космических кораблях и везут с собой обязательных бесплатных пассажиров- микробов - обитателей кишечника, кожи, рта... Кабина корабля - замкнутое пространство, своеобразная ампула, в которую помещены люди. Стерильность человека невозможна хотя бы потому, что ряд микробов выполняет жизненно важные для организма функции - ферментативные, витаминообразующие и прочие, и расстаться с ними нам будет не просто тяжело, сегодня это абсолютно невозможно. Вместе с тем многие представители нормального микробного населения нашего тела, безусловно, носители зла. Либо всегда, либо при определенных условиях. Например, стафилококки, стрептококки, кишечная палочка, возбудители газовой гангрены, вирусы.
В условиях закупоренной "ампулы" - кабины процессы циркуляции и удаления микробов будут иные, чем в обычных наземных условиях. Возникнут изменения в микробных ассоциациях воздуха, поверхностей кабины и в теле человека. Изменение привычных, индивидуальных для данного человека микробных сообществ может произойти также вследствие тесного контакта космонавтов в герметизированном пространстве. Встает ранее не существовавшая проблема заражения одного человека микробами, безвредными для другого. Но у первого они могут вызвать различные болезненные состояния.
Недавно были опубликованы данные советских исследователей об условиях длительного обитания людей в герметических пространствах, имитирующих условия полета. Выяснилось, что количество микробов, в том числе и болезнетворных, как в окружающей среде, так и на теле человека значительно возрастает.
Таким образом, в условиях длительных космических полетов реально возможны изменения нормального микробного населения тела космонавтов и окружающего их пространства. Ожидаются изменения обычных микробных ассоциаций и чрезмерное накопление отдельных форм бактерий. По-видимому, в результате, например, мутаций, возникающих под влиянием ионизирующих излучений, изменяются также и свойства микробов.
Иммунологию волнует, какие виды микроорганизмов займут главенствующее положение в этих новых ассоциациях, какие типы внутри этих видов. И кто может явиться наиболее вероятным и частым болезнетворным агентом? Эти вопросы ставятся не для удовлетворения научной любознательности. Решение их должно ответить: против каких возбудителей необходимо вакцинировать перед полетом?
Второе, что интересует космическую иммунологию: действие условий длительного полета на невосприимчивость к возбудителям инфекций, в том числе и к представителям обычной микрофлоры тела человека. Ведь в космических кораблях человек окажется под воздействием новых, длительно действующих факторов: невесомость или искусственная гравитация, специальная диета и искусственная атмосфера, вынужденное ограничение подвижности, влияние космической радиации и др. И как поведет себя иммунологическая защита при всех этих странностях, пока неизвестно.
Основной путь решения этих вопросов - моделирование необычных условий космического полета на Земле и изучение их воздействия на иммунитет. Надо выяснить, сколь эффективна будет вакцинация. Вскрыть механизм действия этих условий на основные иммунные процессы. Космическая иммунология должна не только решить эти задачи, но и найти пути предотвращения возможных осложнений.
Третья предпосылка - почти фантастика. Но она не менее важна, а со временем может стать ведущей проблемой космической иммунологии. Речь идет о возможном столкновений человека с внеземными формами жизни. Отправляясь в космос, мы отправляемся почти в неведомое. Кто знает, что будет при очередном полете и особенно при залете куда-нибудь?
Иммунологов прежде всего интересуют встречи с микробами, писателей - контакты с разумными существами. Но встречи с микробами могут оказаться более фееричны, необычны и фантастичны по своим результатам, что писатели еще пожалеют об упущенных возможностях. Неизвестные микробы могут помочь ликвидировать болезни, сделать человека светящимся в темноте. Это первое, что приходит в голову. А если поработать, то можно дойти до совершенно сногсшибательно заманчивых выдумок.
В конце концов микробы, наиболее вероятно, станут первыми встретившимися нам аборигенами. Рано или поздно такое столкновение произойдет. Проблемы, возникающие в связи с этим, имеют самое тесное отношение к экзобиологии - науке о жизни за пределами нашей планеты. Иммунологию прежде всего интересует, что произойдет, когда встретятся землянин и совсем-совсем чужой микроб. Окажется ли человеческий организм столь же невосприимчивым к чужим микробам, как и к своим, земным? Вот в чем вопрос.
Иммунитет как способ защиты организма возник вследствие эволюции жизни в конкретных земных условиях. Реакции иммунитета направлены на отторжение или нейтрализацию всего чужого, проникающего в организм: вирусов, бактерий, животных клеток, тканей, белков. Но чтобы включились реакции иммунитета, посторонние тела (живые или мертвые) должны быть распознаны и признаны чужеродными.
Первая задача защитных сил - сказать: "свой" или "чужой". Любые клетки или их продукты принимаются за чужое и включают реакции иммунитета, если несут генетически чужеродную информацию. Но для этого они должны быть построены из эволюционно знакомых для иммунных механизмов молекул и признаки чужеродности должны быть записаны земным "шрифтом".
Степень универсальности иммунитета неизвестна. Если внеземные микроорганизмы и продукты их жизнедеятельности не несут химических группировок, позволяющих нашим иммунным механизмам определить их как чужеродных, если они не будут распознаны и не включат защитные реакции, возможно безудержное размножение чужих микробов в крови и тканях человека. Что тогда?
Еще раз вспомним Герберта Уэллса. "Война миров". Пришельцы с Марса погибают от невинных земных бактерий. Сегодня уэллсовская фантазия превращается в реальную научную проблему. Иммунология уже сейчас имеет настораживающие в этом отношении факты. Как говорится, иммунология уже "получила сигнал".
Нам уже абсолютно ясно: иммунитет стимулируется чужеродными веществами - антигенами. Синтезированы очень большие молекулы полипептидов, состоящие из основных компонентов белка - аминокислот. При определенной величине молекул эти искусственные полипептиды становятся антигенами. Но при одном условии. Если они составлены из таких же в оптическом отношении аминокислот, из каких построено все живое на Земле. Из аминокислот, отклоняющих плоскость поляризованного света влево, из левовращающих изомеров.
Правовращающие соединения имеют абсолютно тоже химическое строение. Лишь одна группировка расположена под иным углом ко всей молекуле. И этого достаточно, чтобы сложное органическое вещество не воспринималось как чужое, не стимулировало иммунологических реакций! Земной организм, построенный на основе левовращающих соединений, не может распознать (или делает это несовершенно) чужеродное вещество, составленное из правовращающих аминокислот.
А что, если микроорганизмы других миров построены на основе правовращающих соединений и наш иммунитет окажется бессильным перед ними?
Задачи космической иммунологии в этой области чрезвычайно трудны и интересны: моделирование возможных реакций млекопитающих на различные природные и искусственные высокополимерные соединения. Ибо какова бы ни была форма внеземной жизни, она обязательно связана с высокополимерными соединениями. Изыскание путей стимуляции иммунитета по отношению к необычным полимерам, путей превращения неантигенных соединений в антигены и иммунологические исследования объектов из космоса - вот этапы космической иммунологии в этой области.